
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gpaa20

International Journal of Parallel, Emergent and
Distributed Systems

ISSN: 1744-5760 (Print) 1744-5779 (Online) Journal homepage: https://www.tandfonline.com/loi/gpaa20

Incorporating the Raft consensus protocol in
containers managed by Kubernetes: an evaluation

Hylson Netto, Caio Pereira Oliveira, Luciana de Oliveira Rech & Eduardo
Alchieri

To cite this article: Hylson Netto, Caio Pereira Oliveira, Luciana de Oliveira Rech & Eduardo
Alchieri (2019): Incorporating the Raft consensus protocol in containers managed by Kubernetes:
an evaluation, International Journal of Parallel, Emergent and Distributed Systems, DOI:
10.1080/17445760.2019.1608989

To link to this article: https://doi.org/10.1080/17445760.2019.1608989

Published online: 26 Apr 2019.

Submit your article to this journal

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gpaa20
https://www.tandfonline.com/loi/gpaa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17445760.2019.1608989
https://doi.org/10.1080/17445760.2019.1608989
https://www.tandfonline.com/action/authorSubmission?journalCode=gpaa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gpaa20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/17445760.2019.1608989&domain=pdf&date_stamp=2019-04-26
http://crossmark.crossref.org/dialog/?doi=10.1080/17445760.2019.1608989&domain=pdf&date_stamp=2019-04-26

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS
https://doi.org/10.1080/17445760.2019.1608989

Incorporating the Raft consensus protocol in containers managed
by Kubernetes: an evaluation

Hylson Netto a, Caio Pereira Oliveirab, Luciana de Oliveira Rechb and Eduardo Alchieri c

aCatarinense Federal Institute, Campus Blumenau, Brazil; bDepartment of Informatics and Statistics, Federal
University of Santa Catarina, Brazil; cDepartment of Computer Science, University of Brasília, Brazil

ABSTRACT
Replication is a technique widely used to improve the reliability of appli-
cations. State machine replication is a special approach, where a set of
computers are kept synchronised in the same state despite of failures that
could occur in the system. The Raft algorithm can be used to implement
a total order delivery protocol, delivering requests at the same order at
all replicas, which is fundamental since in this approach all replicas must
execute the same sequence of requests to present the same evolution in
their states. Raft is easy to understand and implement, when compared
to the Paxos algorithm. On the other hand, virtualisation can be seen as a
technique that helps thedevelopment of reliable applications since itmain-
tains each virtual machine (VM) isolated from the others. Virtualisation in
data centres is changing from the traditional VMs to containers. In this con-
text, this paper proposes KRaft, an incorporation of Raft in Kubernetes, a
system that manages containers. After an evaluation of performance and
resource consumption of KRaft, we found that it presents performance
close to Raft executing on physical machines. Moreover, KRaft demands
more network transmissionwhile Raft executed in physicalmachines needs
more processing power and memory.

ARTICLE HISTORY
Received 10 September 2018
Accepted 15 April 2019

KEYWORDS
Distributed agreement; state
machine replication;
virtualisation; containers

1. Introduction

The concept of virtualisation has appeared in the 60s and 70s when IBM developed operating systems
that allow the use of virtualisation [1–3]. In the 80s, the hardware becomes cheaper than the previous

CONTACT Hylson Netto hylson.vescovi@ifc.edu.br

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/17445760.2019.1608989&domain=pdf&date_stamp=2019-04-26
http://orcid.org/0000-0002-1929-7743
http://orcid.org/0000-0002-6022-3631
mailto:hylson.vescovi@ifc.edu.br

2 H. NETTO ET AL.

years and virtualisation was less important. However, in the 90s virtualisation received a lot of atten-
tion again, mainly by the appearance of the Java programming language. The benefits of the use of
virtualisation include flexibility, security and costs reduction since it is easy to configure and to man-
age an application using virtualisation. On the other hand, it also brings some performance overhead
to the applications.

Virtualisation can be seen as a technique that helps the development of reliable applications since
it maintains each virtual machine (VM) isolated from the others. In fact, many works proposed its use
to develop fault- and intrusion-tolerant applications [4–9].

Data centres make use of VMs to enable dynamic resource provisioning, providing a flexible and
cost-effective (pay-per-use) resource sharing among users [10]. The access to these resources via
Internet composes the Cloud Computing, defined by NIST as ‘a model for enabling ubiquitous, con-
venient, on-demand network access to [. . .] computing resources [. . .] rapidly provisioned and
released’ [11]. Considering the importance to provide resource rapidly in data centres, containers have
received a lot of attention, since they can provide faster resource allocation when compared with tra-
ditional VMs [12]. Among the available implementations of containers, Docker [13,14] is probably the
most used. Facing the possibility of migration from VMs to containers [15], some companies founded
theCloudNative Computing Foundation (CNCF) [16] to drive the adoption of containers by thediverse
cloud providers. The goals of CNCF include the creation of standards for container operation in clouds.

Google has a wide experience in using containers [17] and launched Kubernetes [13], that is an
initial result from CNCF. Kubernetes is an open source cluster manager for Docker containers, it
brings together knowledge fromengineers of Borg [17], the containermanager of Google. Kubernetes
replicates containers to improve availability.When a container fails, Kubernetes recreates it fromapre-
defined image. However, the state of a failed container is not restored. Applications can use external
data volumes to maintain their state, but it is necessary to protect these volumes against failures. Fur-
thermore, when providing state replication, applications have to handle concurrent access to these
volumes.

Raft [18] is an algorithm derived from Paxos [19], that can be used to implement replicated state
machines (RSM) [20] in local area networks (LAN). Raft is arguably easier to understand and implement
than the Paxos algorithm, sheddingmore light on the studyof consensus and replicated statemachine
protocols. Consensus is a fundamental building block to solvemany practical problems that appear on
reliable distributed systems. Through a consensus protocol, participants of a distributed system reach
agreement in a single value despite of processes failures, allowing them to coordinate their actions in
order tomaintain state consistency and ensure systemprogress. In this way, by using Raft, it is possible
to implement a total order delivery protocol [21] which allows that all requests sent to any replicated
container are executed in the same order on all replicas (containers). This is a fundamental aspect for
RSM implementation since it allows that all replicas present the same evolution in their states (i.e.
‘ synchronise’ their states). Raft can be applied in Kubernetes at the application level, i.e. inside the
containers.

Relatedwork. Some previous work evaluated Raft [22,23] but measurements in terms of latency and
throughput are still incipient. The author of Raft [22] has executed some preliminary tests of per-
formance on which the system scales as more replicas are inserted in the system. However, latency
is measured considering only one client, a scenario that is not the common one in data centres.
Another work [23] repeated the Raft author’s performance analysis, but its major measurements are
also focused in the leader behaviour: neither the latency perceived by clients nor the throughput
presented at the servers are mentioned.

This work extends a previous seminal performance evaluation of Raft in Kubernetes [24], whichwas
focused on latency and throughput metrics and did not consider resources consumption. The latency
and throughput of other consensus protocol in Kubernetes also was evaluated, like the DORADO -
orDering OveR shAreD memOry protocol [25], that uses the etcd of Kubernetes as a shared memory.
Althoughperformance (latency and throughput) is a very important characteristic of someapplication,

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 3

the amount of resources required for its execution also is very relevant, mainly in a cloud comput-
ing environment since users of clouds pay according to the resources they allocate. Although clouds
offer elastic resource allocation, measuring the resource consumption of RSM applications (accord-
ing to different workloads) can provide useful parameters for users when contracting cloud providers.
There are some initiatives that establish a relation between performance and resource consumption
in clouds. For example, the performance of cloud computing services wasmeasured according to net-
work load and placement of VMs [26], the performance of scientific applications executed in the cloud
was investigated [27] and also the adoption of containers for high-performance computing environ-
mentswas considered [28]. However, further investigation is required toevaluate theperformanceand
resource consumption in the context of RSMprotocols executed in cloud environments. It is important
to notice that our goal is not to evaluate different applications when executed in Kubernetes, but the
costs associated with the RSM protocols. These costs could be seen as the overhead necessary to use
an underlying RSM layer to support dependable execution of applications. Analysis regarding appli-
cation costs already was exhaustively studied in the literature [27–31] and are orthogonal to this work
since they refer to another layer.

Contributions. This paper extends previous studies, notably [24], by trying to answer the following
question: ‘How can we incorporate a consensus protocol in the Kubernetes architecture and what are the
associated costs regarding performance and resources consumption?’ In answering this question, this
paper presents the following contributions:

(1) It proposes a protocol for incorporating Raft in Kubernetes, resulting in the KRaft (Raft modi-
fied to run in Kubernetes). With this incorporation, we give more functionality to the containers
managed by Kubernetes, i.e. requests sent to the system now could be executed at the same
order at all containers, increasing the system with fault tolerance properties by implementing
an RSM;

(2) It presents an evaluation of Raft when used to implement an RSM. We compare its execution in
two scenarios: (a) on top of containers implemented by Docker andmanaged by Kubernetes; and
(b) directly in physical machines. We found that the throughput presented by the system and
the latency perceived by clients is similar in both environments. We also analysed the relation
between some workloads and resources consumption, in order to characterise the behaviour
of RSM implemented by Raft in the Kubernetes environment. Moreover, we also investigated
the overhead required by Raft when compared with an application that does not replicate its
state.

Paperorganisation. The remaining of the paper is organised in the followingway. Section 2 presents
concepts about virtualisation and shows how Kubernetes manages containers. An overview about
state machine replication and the Raft algorithm is presented in Section 3. Section 4 discusses the
adaptions necessary to execute Raft in Kubernetes. Section 5 presents the evaluation of Raft in several
scenarios. Section 6 discusses some lessons we acquired during the development of this work. Finally,
Section 7 concludes the paper.

2. Virtualisation, containers and Kubernetes

The virtualisation concept appeared from the necessity of simulating the execution of computer
instructions [1–3]. Virtualisation is useful, for example, to execute a software designed to a specific
hardware in another different hardware, or even to execute a software before the target hardware is
available. In 1974, it was estimated that if the real and simulatedmachine were the same (e.g. both are
able to run software for the same hardware), it could be possible to run programs with a slow-down

4 H. NETTO ET AL.

about 20 to 1. Nowadays, we know that some simulated machines, known as VMs, can execute pro-
grams with the same speed as if the programs were running in the physical machines on which the
VMs are hosted [32].

The Linux operating system has some components that enable virtualisation at the system level.
Containers are VMs instantiated from static images. When a container turns off, its state1 is lost. Usu-
ally, containers also do not maintain session data about specific clients. Consequently, containers are
known as stateless VMs. Images of containers are usually small because only files that do not exist in
its host are effectively stored in the container image. This is possible with the use of a layered file sys-
tem, e.g. aufs. Therefore, the creation of containers is fast and resource provisioning becomes more
efficient, in comparison to the traditional VMs [32]. The Linux kernel containment features is more
known as LXC,2 which gain popularity since Docker [13,14] extended it and became themost popular
container implementation.

Google created Kubernetes [13] to provide a complete system for management of containers.
Announced as an open source system, it is under active development by many engineers who build
Borg [17], the container management system currently used by Google. Kubernetes inherits some
concepts from Borg: for example, a web server produces logs and a log analyser reads them. These
applications can be created in different containers, which is useful for updating each application sep-
arately. However, strongly coupled containers like these should stay on the samemachine, in order to
improve communication among containers. Borg has a feature called Alloc, which maintains contain-
ers on the same machine. Similarly, Kubernetes has a component called POD with the same goals of
Alloc.

A Kubernetes cluster is composed of (virtual or physical) machines (Figure 1). Each machine is a
node. A POD is a minimal management unit, and it can contain one or more containers.3 PODs receive
network addresses and are allocated to nodes. Containers that are inside a POD share resources, such
as volumes where they can write and read data. Clients contact the cluster through a firewall, which
distributes requests to nodes according to load balancing rules. The proxy receives requests from the
firewall and forwards them to PODs. If a POD is replicated, the proxy component distributes the load,
sending requests to one of the replicas. The kubeletmanages PODs, containers, images and other ele-
ments in the node. It also sends data about the monitoring of containers to the main node, which will
act when necessary.

The Kubernetesmanagement components are in themain node. Components of Kubernetes inter-
act via REST APIs. On the following, we highlight two of these components: etcd and kubectl. The tool
etcd [33] implements the Storage component, which persists the state of the Kubernetes cluster. The
kubectl is a command interface in which a human operator can interact with the cluster, e.g. to create
PODsor to check for thehealthof the cluster. There areothermanagement components inKubernetes,
but their description is out of the scope of this paper.

3. State machine replication and Raft

State machine replication [20] (SMR) is a technique applied to keep a set of computers synchronised
in the same state in despite of failures that could occur in the system. This approach requires that the
system has at least n ≥ 2f + 1 replicas to tolerate up to f crash faults.

The idea behind this approach is that replicas start from a common initial state and, when the state
of any computer ismodified, the remaining computers of the group are also updated in the sameway.
To achieve this behaviour, every request is delivered to all replicas in the same order via some atomic
broadcast protocol [21], what allows that replicas can execute the same set of operations at the same
order. Moreover, to ensure that all replicas will reach the same final state, replicas must execute only
deterministic operations.

The previously described behaviour is defined in terms of the following properties three proper-
ties [20]:

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 5

Figure 1. Kubernetes architecture.

• Initial state: All correct replicas start on the same state.
• Determinism: All correct replicas receiving the same input on the same state produce the same

output and resulting state.
• Coordination: All correct replicas process the same sequence of commands.

The first two properties are not so hard to implement since they need that (1) all variables that
represent the state of a replica start with the same values at all replicas and (2) all operations are
deterministic. On the other hand, coordination need an atomic broadcast protocol and/or a consensus
protocol, once they are equivalent [21].

Consequently, the implementation of an SMR needs a partially synchronous systemmodel [34], on
which the system is assumed to be asynchronous most of the time. However, there are windows on
stability in a manner that messages are synchronously sent in the network. This is the weakest model
of synchrony in which consensus is solvable deterministically.

Although SMR is an abstraction of high-level, many systems executed in clouds use replication
algorithms to implement smaller actions like leader election and group membership. These services
are frequently used to coordinate machines in data centers [35]. Despite the inherent replication
cost, there are some examples in literature where SMR can be used to implement high-performance
systems [36–38]. For example, some parts of the system can be provided with asynchronous repli-
cation [36] to benefit performance. Reordering requests can minimise the movements in the arm of
hard disks and benefit performance from state machines backed by disks [37]. Another customisation
is related to the workload of some systems: when read-only commands are left out of the ordering
required by SMR, the system can provide the same latency of a non-replicated system [38].

Raft is a consensus algorithm that can be used to implement state machine replication. The Raft
algorithm structure was created in a way that people can understand it easier than Paxos [19], the
most popular algorithm of consensus. As a natural consequence, a high number of Raft implementa-
tions appeared [39]. The novel features carried in Raft refers to the way the leader communicates with

6 H. NETTO ET AL.

Figure 2. The Raft protocol (R0 is the leader).

the replicas, the elections procedure and themembership changing. Firstly, updates on the replicated
state are sent only from the leader to the replicas, which simplifies the management of the replicated
log. As a consequence, only the leader accepts requests fromclients. Requests sent to non-leader repli-
cas are ignored. Second, randomised timeouts are used in leader elections, which solves conflicts in a
simple and fastmanner. Itmatches the load balance strategy implemented by Kubernetes, where con-
tainers are not differentiated among them and any container could be a leader. In fact, with the use
of randomised timeouts to elect a leader, any container can be chosen leader in a non-deterministic
manner. Finally, Raft uses the well-known quorums approach [40] to maintain the system operating
during view changes. The majority of two different configurations overlap ensures the consistency of
the replicated state while the configuration changes.

In Raft, one replica acts as a leader and the remaining replicas acts as followers. Raft operates in
phases as follows (Figure 2):

• Phase I: first, a client send a request to a leader.
• Phase II: the leader sets an order to the request and presents the request to the followers.
• Phase III: followers accept the request and answer to the leader.
• Phase IV: the leader commits the request and answer to the client.
• Phase V: on the next event (a heartbeat or a new request order proposal), the leader sends a commit

to the followers, which will also commit the request.

Replicas receive heartbeats from the leader. If after some time a replica did not receive any commu-
nication from the leader (by a heartbeat or by new ordered requests), it becomes a candidate replica
and starts an election. The replica sends a RequestVote message to all replicas, which will answer
with Vote messages. A replica did not accept a leader only if it has a more updated log entry than
the proposed candidate and there is not yet a newly elected leader. A new leader is elected when it is
accepted by a majority of replicas.

4. KRaft: Raft modified to run in Kubernetes

There are many Raft implementations available to download. We chose the pontoon4 implementa-
tion that was developed using the Golang5 programming language because of some specific reasons.
Firstly, as a compiled language, it will provide a little executable code, which is favourable to keep the
container size small. Our container with Raft has 53MB and is available in the Docker Hub6 under the
tag KRaft. Considering the available implementations of Raft in Go (at Raft site), we choose one we
considered themost suitable tomodify (ease of understanding is a relevant criteria: it is the design cri-
teria of Raft). Another characteristic we considered is that Kubernetes is developed in Go, which could
benefit the integration of the replicated state machine mechanism powered by Raft in Kubernetes.
Integration is a technique that could make Kubernetes replicate states of any container in a transpar-
entway [41]. Integrating a component in aplatform ismore easilywhenboth aremadeunder the same

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 7

Figure 3. KRaft architecture.

technology [25]. In fact, etcd (Section 2) uses Raft (written in Golang) to make the Storage component
of Kubernetes reliable, distributing its storage in other machines.

Considering the reasons above, we forked the pontoon implementation and created KRaft, a Raft
ready to be executed in Docker containers at Kubernetes. Two modifications were done in Raft to
enable its execution in containers managed by Kubernetes: the replica discovery mechanism and the
acceptance of requests by any replica.

(1) Replica Discovery Mechanism: Each replica in Raft have to know the set of replicas that are joined
in the current system configuration view. We changed the initialisation procedure of Raft to get
the replicas list from the API Server of Kubernetes. This action is necessary because containers
receive a dynamic IP address when they are instantiated. This usually does not happens in other
SMR systems [42] because it is a common assumption to consider that servers have static network
addresses. Moreover, replicas periodically query the API Server to keep updated the configuration
view, adding or removing replicas that were changed by Kubernetes. These changes can happen
by human operation (for example, with the goal of change the number of replicas) or automati-
cally because of the Kubernetes monitoring (if it detects the failure of some container, which will
result in its destruction and the creation of a new one).

(2) Acceptance of Requests by any Replica: The second modification refers to the acceptation of
requests. In the original Raft, only the leader accepts requests (Section 3). Non-leader replicas
are expected to discard requests received from clients. In Kubernetes, there is a load balance at
the node level that distributed requests among replicated containers through the proxy com-
ponent (Section 2). To match the load balance requirement, we modify the replica behaviour as
follows: when a non-leader replica receives a request, it sends this request to the leader, waits for
its execution, and forwards the answer to the client (see below).

KRaft Request Processing Phases/Steps.

KRaft runs in Kubernetes as a library togetherwith the application (Figure 3). The client sends a request
to a proxy through the firewall (steps 1 and 2). When a request is received at the proxy (step 2), it acts
as a load balancer and forwards (step 3) the request to some container (replica). Replicas communi-
cate among them using KRaft protocol (step 4) to coordinate and establish the order for the request
execution. After that, the request is executed against the application state and the container which
received the request answers the client again through the proxy and the firewall (steps 5, 6 and 7).

Depending on the proxy’s choice on step 3, the system will present two different behaviours. In
case the request is forwarded to the leader container, KRaft protocol proceeds as follows (Figure 4):

8 H. NETTO ET AL.

Figure 4. KRaft execution: request forwarded to the R0 leader node.

• Phase I: first, the client send the request to the Kubernetes cluster.
• Phase II: the request is forwarded by a firewall to a node (N0 in the example).
• Phase III: inside the node, the proxy forwards the request to a replicated container R0 that is acting

as a leader in the KRaft protocol.
• Phase IV: the leader R0 assigns an order to the request and send it to the other replicas.
• Phase V: replicas accept the ordered request.
• Phase VI: the leader R0 executes the request, reply to the client and sends commit to the other

replicas.
• Phases VII e VIII: the reply is forwarded to the client through the proxy and the firewall.

Otherwise, in case the proxy forwards the request to a non-leader replica (container), this replica
will acts as a client and forwards the request again to the leader replica. This could happen because
the leader is located in only one of the nodes on which KRaft has the replicated containers and the
proxy could forward the request to a node that does not contain the leader container. Moreover, a
node where the leader is placed could also hosts other replicas of KRaft than the leader.

In case a non-leader replica receives the request, the KRaft protocol needs two additional steps (III-b
and VI-b) and executes as follows (Figure 5):

• Phase I: the client send the request to the Kubernetes cluster.
• Phase II: the request is forwarded by a firewall to a node (N1 in the example).
• Phase III: inside the node, the proxy forwards the request to a replicated container R1 that is not

acting as a leader in the KRaft protocol.
• Phase III-b: the non-leader container R1 acts as a client of the system and sends the request to the

leader container R0 (dotted line).
• Phase IV: the leader R0 assigns an order to the request and send it to the other replicas.
• Phase V: replicas accept the ordered request.
• Phase VI: the leader R0 executes the request and sends commit to the other replicas. In addition

to the commit message, the non-leader replica R1 receives the answer since it is acting as a client
(dotted line).

• Phase VI-b: the non-leader replica R1 replies to the client.
• Phases VII e VIII: the reply is forwarded to the client through the proxy and the firewall.

Applications that could benefit from the proposed solutions

This paper proposed KRaft, a Raft consensus protocol modified to run in the containers orchestrator
Kubernetes. This section discusses some practical aspects and characteristics related to the use of this

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 9

Figure 5. KRaft execution: request forwarded to the R1 non-leader node (R0 is the leader).

integration in the deployment of replicated applications. In summary, first it discussed the use of SMR
in the development of applications and, finally, containers security and isolation issues are presented.

SMR and applications. Many applications can benefit from the proposed system, mainly critical
applications that must ensure availability for the users. Availability entails tolerating component fail-
ures and is typically accomplishedwith replication.Many systems still use the primary backup strategy
or similar protocols [43], which have to use a conservative timeout to reduce the possibility of asyn-
chronous events that could lead to false failures suspicions. Another drawback of this strategy is the
state transfer overhead, which could be prohibitive for applications with large states.

Following a different approach, SMR ensures data availability and consistency across replicas by
using a consensus protocol (like KRaft) to implement an ordering protocol that ensures all replicas
deliver and execute requests in the same order. Consequently, all replicas evolve synchronised, pass-
ing through the same states. This approach is a generic and well-known technique to implement
fault-tolerant systems. In fact, a state machine replication system can be developed to be completely
transparent for the applications [44,45], leaving it free from any modifications. Moreover, in this case,
a programmer can focus on the inherent complexity of the application while remaining oblivious to
the difficulty of handling replica failures or state consistency.

To ensure linearisability [46] (the consistency criteria for SMR), operations executed at the repli-
cas must be deterministic, ensuring that they will produce the same reply and evolve through the
same states. This limitation can prevent the use of this approach for some applications. Fortunately,
techniques are being studied to handle non-determinism of replicated applications [47,48].

Regarding performance, although the SMR protocols impose some overhead for the applications
(and potentially can preclude its use for some applications that need a very low latency – e.g. real-time
applications), mainly its consensus protocol, many recent studies proposed solutions that exploit the
applications semantic to improve the overall system performance (e.g. [38,49–51]).

Finally, the SMR approach has been successfully used inmany large online services. Notable exam-
ples are Google’s Chubby [52], Google Spanner [53], Windows Azure Storage [54], Scatter [55] and
Apache Zookeeper [56]. Moreover, the emergence of blockchain and cryptocurrencies technologies
brought a lot of attention to SMR protocols (e.g. [57–60]).

Containers security and isolation issues. Security issues are frequently pointed out as a weakness
for hosting applications in containers. However, there are proposals for improving the security of
hosted applications concerning the isolation between the containers. SCONE is a mechanism that
uses a trusted computing base (TCB) to increases confidentiality and integrity of containerised appli-
cations [61]. Moreover, SCONE does not require any changes to the hosted application. Another effort
is the Atomic project [62], a practical solution to improve isolation between containers. This solution
uses the SELinux to increase the protection of both host and containers.

10 H. NETTO ET AL.

5. Evaluation

In this section, we assess the execution of Raft (the original Raft protocol executed in physical
machines) and KRaft (our modified Raft protocol to run in Kubernetes previously presented at
Section 4) under different conditions. In summary, our main goal is to verify if KRaft presents a perfor-
mance similar to Raft and identify the resources usage for each protocol. This conjecture is supported
by the evidence that applications hosted in containers can execute with similar performance of their
executions directly in physical machines [32,63].

Moreover, as applications consume resources for their executions, these aspects also are important
and must be investigated. Special interesting, in the cloud environment this is very relevant because
users pay to the providers based on how much resources their applications require.7 In this evalua-
tion, we measure the amount of CPU, memory and network that Raft and KRaft require during their
executions. Thesemetrics are usually considered tomeasure resource consumption [12,28,63,64]. The
first two characteristics (CPU and memory) determine which kind of machine is required to execute
the application, while the last one (network) can reveal theminimal amount of bandwidth required to
maintain replicas synchronised, specially when more clients access the system simultaneously.

Additionally, we also evaluated the overhead to maintain a service replicated across containers by
comparing the execution of KRaft and a non-replicated application. State replication usually signifi-
cantly impacts the system performance, but this is acceptable since this approach allows the creation
of high available services [36–38].

5.1. Experiments setup

The experimental environment was configured with four machines Intel i7 3.5GHz, QuadCore, cache
L3 8MB, 12GB RAM, 1TB HD 7200 RPM, connected via LAN Ethernet 10/100 MBits. The operating
systemusedat eachmachinewasUbuntuServer, version14.04.3with kernel 3.19.0-42.WeusedKuber-
netes version 1.1.7 and Docker 1.9.1. Containers that were allocated in distinct physical machines
communicate through a virtual network implemented by Flannel.8

KRaft was executed in Docker containers managed by Kubernetes and Raft was executed directly
on the same physical machines where Kubernetes is installed. Three replicas of Raft were placed on
distinct machines to tolerate one replica failure. Kubernetes also always allocated containers in differ-
ent machines, according to its default policy. This placement approach improves system availability
since it enables the system to tolerate crash faults of the underlying hardware.

Resources were measured using the Versatile Resource Statistics Tool (dstat),9 which is available
inmany Linux distributions. The dstatwas started immediately before the creation of the KRaft con-
tainers and stopped just after the experiment execution. On the same way, in the physical machines
context the dstat was started before Raft replicas started and was stopped some seconds (approxi-
mately 5 s) after all clients received answers. The time of observation for each execution stays around
30 s.

For the KRaft protocol, all consumptionmeasurements were done on the first machine that served
as a node of the Kubernetes cluster. The samemachinewas used formeasurements in the case of Raft.
Notice, however, that the results reported here represent the consumption of only one machine and
not the total amount required by all machines. Consequently, considering the application replicates
its state at n replicas, the total amount of resources required in the executions is approximately the
values reported here multiplied by n.

The source-code of KRaft, Raft and the non-replicated application are available in GitHub10 plat-
form. These applications used in the experiments do not execute any operation, i.e. they implement
an ‘empty’ service and only the request/response sizes can be configured. These benchmarks are com-
monly used to evaluate this kind of application [42] and we used the configuration 0/0 to assess only
the impact caused by each approach. At the end of each execution, we checked the final state of

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 11

replicas by generating a hash of the log created by Raft or KRaft, according to the considered envi-
ronment. This hash always was equal in all replicas, indicating that they executed the same sequence
of operations.

To simulate multiple clients accessing the system, we used the Apache HTTP server benchmark-
ing,11 which is also available in common Linux distributions. The clients are located in the main
machine of Kubernetes. We variate the number of clients from 4 up to 64, doubling the number of
clients on each step. For each experiment, in spite of the number of clients, the system was exposed
to 8000 requests. This mean that in a n-clients configuration, each client sent 8000/n requests to the
system. For example, when the system operated with 4 clients, it means that each client sent 2000
requests.

5.2. Results and discussion

This section reports the results and discusses the main aspects that were gathered from the experi-
ments. The results are divided into four classes: (1) application performance (throughput and latency);
(2) application resources consumption (CPU, memory and network); (3) a performance comparison of
KRaft to a non-replicated application, fromwhere it is possible to assess the overhead imposed by the
state replication and (4) an assessment of the impact of failures in the system.

5.2.1. Latency and throughput
Table 1 and Figure 6 present performance results for clients accessing both Raft and KRaft. The table
shows that the latency mean measurements presented low standard deviation for all configurations.
As expected, Raft performs better when running in physical machines and the overhead of KRaft over
Raft in terms of latency increases as more clients access the system. However, KRaft has an overall
efficiency around 82% of Raft, in terms of latency (last column of the Table 1). As more clients access
the system, latency increases for all measured environments.

Throughput of KRaft grows up to around 376 requests per second, while Raft achieves 454 requests
per second. Throughput gets higher asmore clients enter in the system (Figure 6(b)), reaching thepeak
throughput when there are more than 8 clients. The throughput was calculated by dividing the total
amount of requests executed (8000) by the total time demanded for its execution.

Table 1 also presents the results for an application (in Kubernetes) that did not replicate its state.
As expected, since no coordination is needed, the performance is better in these cases but the system
properties could be impaired by a single failure. The costs for accessing a non-replicated system and
the overhead for replication are further discussed at Section 5.2.3.

Table 1. KRaft, Raft and non-replicated application measurements.

KRaft Raft Non-replicated application

Lat. Lat. Lat.

Clients AV (ms) SD (ms) Thr. (req/s) AV (ms) SD (ms) Thr. (req/s) AV (ms) SD (ms) Thr. (req/s)
Latency

Raft/KRaft (%)

4 11 1.2 114 9 1.0 141 2 0.4 2439 81.8
8 21 1.9 208 18 1.5 253 3 0.6 2973 85.7
16 42 2.6 377 35 2.2 453 5 0.6 2991 83.3
32 85 4.4 376 70 3.7 454 10 1 3051 82.4
64 170 9.3 375 141 7.7 452 21 1.6 2982 82.9

Notes: The table shows the latency (Lat.) perceived at clients and the throughput (Thr.) presented by servers. For latency, it is
presented the average (AV) and the standard deviation (SD).

12 H. NETTO ET AL.

Figure 6. KRaft and Raft performance. (a) Latency and (b) throughput.

5.2.2. System resources consumption
This section analyses the results for memory, CPU (processors) and network consumption for both
KRaft and Raft during 30 s of their execution (approximately, the time demanded to execute the 8000
requests).

5.2.2.1. Memory. Figure 7 presents the amount ofmemory used to execute each protocol. All graph-
ics about memory are plotted discarding initial memory usage at physical machine or inside the
container, because we want to show the behaviour of the consensus algorithm during the experi-
ments execution. Additionally, this approach results in graphics of memory, CPU usage and network
with the same measurement referential (the zero point at Y axis).

Thememory consumption of Raft and KRaft are very similar since they execute the same algorithm
for request ordering and execution. A statistical test (t of Student) indicates that the memory curves
are not significantly different, although in Figures 7(c,d) Raft memory consumption depicts slightly
higher values than KRaft. It has been shown that operating system level virtualisation has a memory
consumption similar to the memory consumption in the physical machine [28,63]. After the first 5 s
of monitoring, as more clients access the system, the memory consumption increases until the end of
the experiment mainly because the log grows while requests are received and stored.

5.2.2.2. CPU (Processors). Monitoring the CPU usage shows that Raft uses CPU with more intensity
than KRaft (Figure 8). However, Raft can execute the client’s requests in less time than KRaft, corrob-
orating results of latency presented in Figure 6(a). Container-based systems obtain execution times
very close to native systems [28,63], which lead us to suppose that ourmodification in KRaft (Section 4)
could have extended the processing time of KRaft.

Increasing the number of clients accessing the system, CPU consumption does not change sig-
nificantly. While the clients are beings activated, CPU consumption remains near to zero. As clients
start to send the requests, the nodes work to execute them increasing the CPU consumption. After a
request has its order defined by the leader, the client can receive the answer because the request will
be eventually executed by the replicas. As clients send its last requests, at the end of the experiment
CPU consumption returns to zero.

5.2.2.3. Network. Network behaviour is illustrated in Figures 9 and 10. Sent and received data
were very similar in KRaft, while in Raft the receiving of data was lower than the sending of data.
Although network communication is similar in systems virtualised at the system level and physical

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 13

Figure 7. Memory usage of KRaft and Raft for a different number of clients. (a) 4 clients, (b) 8 clients, (c) 16 clients, (d) 32 clients, (e)
64 clients.

machines [28,63,64], a hypothesis about this network consumptiondifference is that ourmodifications
in KRaft (Section 4, about forwarding requests to the leader and periodically querying the API Server
of Kubernetes) generated this overhead detailed in Figure 10 for the case of 64 clients. In general, the
total amount of network required was not high since KRaft used a mean bandwidth of 3.2MB/s to
operate. Raft required approximately 2.5MB/s, which is 78% of the network used by KRaft.

14 H. NETTO ET AL.

Figure 8. CPU usage of KRaft and Raft for different number of clients. (a) 4 clients, (b) 8 clients, (c) 16 clients, (d) 32 clients, (e) 64
clients.

Moreover, Figure 9 shows that network sending and receiving of data were not impacted by the
amount of users contacting KRaft or Raft. In fact, data sending seems to be equal (in the sense that they
have the samedrawing) inRaft andKRaft. Thebehaviourof thedata receivingalsohave the sameshape
for KRaft and Raft, only differing by the scale of the measured values. Similar to the CPU behaviour,
network consumption increases when clients are being activated and start to send the requests. After
requests are answered to the clients, network traffic decreases to zero.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 15

Figure 9. Network sending (top) and receiving (bottom) for KRaft and Raft. (a) KRaft sending, (b) Raft sending, (c) KRaft receiving,
(d) Raft receiving.

5.2.3. Replication overhead
Figure 11 presents the KRaft overhead in the latency perceived by the clients when compared to
an application that did not replicate its state (both configurations were executed in Kubernetes). As
expected, the figure shows that KRaft cost is higher because it needs to execute the consensus proto-
col among the replicas to keep state consistency, what is not necessary for a non-replicated system.
Moreover, a non-replicated system can also offer a higher throughput than a replicated system, as
presented in Table 1.

However, thebenefits of highavailability and fault toleranceprovidedbyKRaft can compensate this
overhead for many critical system where availability is crucial. Moreover, replicated state machines
can act as the basis of high-performance systems [36–38] if a careful engineering is applied. Some
practices to provide the improvements are optimisations such as compaction of transmitted data [36],
modifications in the internal structure of the log [37] or speculative execution and partitioning of the
consensus instances [38].

16 H. NETTO ET AL.

Figure 10. Network usage of KRaft and Raft: case of 64 clients. (a) Detailed send/receive consumption, (b) Total consumption.

Figure 11. KRaft compared to a non-replicated application.

5.2.4. Impact of failures in the system
This section assesses the impact of failures in the performance of KRaft. The presented evaluation con-
siders the normal case execution without failures as baseline to analyse the two possible scenarios
with failures in the system: non-leader failure – a failure in a non-leader replica is masked by the other
replicas in the system, i.e. the voting mechanisms used in the protocols will not consider the message
from the failed replica; and leader failure – this is the worst scenario that significantly impacts system
performance since a leader failure prevents the progress of the system, i.e. no order is assigned for the
requests until the failure is detected (for this it is necessary to wait for a timeout) and a new leader is
chosen to resume the protocols.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 17

Figure 12. Impact of failures in KRaft.

Figure 12 presents the results for the execution of KRaft in the previously described scenarios, con-
sidering 8 and 16 clients accessing the system. Performance of KRaft is not affected by failures in
non-leader replicas because KRaft algorithm use quorums (voting mechanisms) to get answers from
faster (in this case the correct) replicas. In this case, the KRaft ordering protocol makes progress by
using the messages exchanged by the correct replicas and no leader change is necessary.

However, performance is significantly impacted by a leader failure. Figure 12 shows that latency
increases abruptly in this case. This behaviour happens because it is necessary to wait for a timeout
(configuredas 100 ms in theseexperiments) todetect the leader failure, i.e. if the request is notordered
within a defined time, then replicas suspect that the leader is faulty. Afterwards, it is necessary to
choose a new leader thatwill resume the protocols by proposing an order for the requests not ordered
yet. The right choice of a timeout is fundamental for performance in case of leader failure: a tight time-
outmay lead to false suspicion of leader failures, in this case replicaswill chose another leader delaying
theorderingprotocol; a large timeoutwill delay the suspicionof a failed leader impactingperformance
in case of leader failures.

6. Lessons learned

During the development of this work, some important knowledge was acquired about the incorpora-
tion of consensus and SMR protocols in the Kubernetes architecture. This section discusses some of
the main aspects that we realised during this work.

6.1. Load balancer vs. statemachine replication

Load balancing is a feature designed to provide a better resource usage among the available replicas
of the application. However, when a leader-based consensus protocol like Raft is used to imple-
ment a state machine replication strategy, the most efficient policy should be the forwarding of all

18 H. NETTO ET AL.

request to the leader. The internal loadbalancingprovidedby theproxy component of Kubernetes dis-
tributes requests among replicated containers, which lead us to create the ability of KRaft to deal with
requests received by follower replicas (Figure 5). A more effective solution could be make the firewall
todeliver the request straightly to theKRaft leader container, bypassing the internal proxy component.
Kubernetes already has some features like Ingress12 which enables this kind of implementation.

6.2. Replication costs

Many containers may operate inside the same operating system, meanwhile each traditional virtual
machine provides a different operating system. Consequently, the use of traditional VMs demands
much more resources (e.g.: memory and CPU) than containers. If the target application can be repli-
cated without the requirement of operating system diversity (which is a common assumption when
considering crash fault tolerance), it is possible tomake a better usage of themachine resources. Con-
tainers share resources efficiently since they are a system-level virtualisation, and there are broadly
available implementations like Docker. Considering the cloud computing paradigm of pay-per-use, it
means that the nodes of the cluster (physical or virtual) could be used in a more efficient way, since
many small containers (with different or replicated applications) could operate inside the same node,
demanding less resources.

6.3. Consensus algorithms and virtualisation

TheperformancepresentedbyRaft (physicalmachines) andKRaft (containers) are very similar. As virtu-
alisation allows multiple applications running inside the same physical machine, resources are better
used because the resources are shared among these applications instead of be totally dedicated to
just one of them.

Moreover, when the fault tolerance threshold (i.e. the number of failures tolerated in the system)
gets higher than the number of available physicalmachines,more than one replicated container could
be allocated on top of the same physical machine. This allocation maintains the properties of fault
tolerance since the containers are isolated among themselves and, at the same time, reduce resources
consumption once some of them are shared among the containers (e.g. the operating system).

7. Conclusions

This paper presented an evaluation of the Raft consensus algorithm running in Docker containers and
orchestrated by Kubernetes, a container management system. We found that the performance (both,
throughput and latency) of KRaft (our modified implementation of Raft which enables its execution
in Kubernetes) is similar to the execution of Raft in physical machines. However, the use of virtualisa-
tion facilitates the deployment and management of the replicated system, what justifies the use of
containers and architectures like Kubernetes.

The resources consumption (CPU, memory and network) also does not presented relevant differ-
ences. Interesting, Raft in physical machines used more CPU than in Kubernetes, while the network
consumption was the opposite (mainly, the amount of data received at the hosts). This behaviour
is explained by the need of exchange data for containers management in Kubernetes. Memory con-
sumption was similar because we executed the same consensus algorithm in the two environments
(physical and virtual).

We also found that KRaft has significant overhead to replicate the state of the application hosted in
containers when compared to a non-replicated service. This behaviour was expected since it is well-
known that protocols and algorithms for state replication have a higher cost than a non-replicated
service. This overhead is compensated by the service that is provided to the applications, i.e. it can be
feasible for applications that require high availability.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 19

Notes

1. State can be defined as all data stored inside the container from the time it was instantiated from the image.
2. https://linuxcontainers.org
3. Most of operations in Kubernetes manipulate PODs. However, we opted to refer the term container instead of POD

on the following sections of this paper because the first one is a well-known term.
4. github.com/mreiferson/pontoon
5. golang.org
6. https://hub.docker.com/r/caiopo/raft/tags/
7. See, for example, aws.amazon.com/ec2/pricing/
8. coreos.com/flannel
9. dag.wiee.rs/home-made/dstat/

10. github.com/caiopo/pontoon and github.com/caiopo/raft-legacy
11. httpd.apache.org/docs/2.4/programs/ab.html
12. https://kubernetes.io/docs/concepts/services-networking/ingress/

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was partially supported by RNP/CTIC/MCTIC (Brazil) through project ATMOSPHERE and by the Abys project
CNPq No 401364/2014-3.

ORCID
Hylson Netto http://orcid.org/0000-0002-1929-7743

Eduardo Alchieri http://orcid.org/0000-0002-6022-3631

References
[1] Goldberg RP. Architecture of virtual machines. Proceedings of the Workshop on Virtual Computer Systems; Cam-

bridge, MA; 1973. p. 74–112.
[2] Goldberg RP. Survey of virtual machine research. Computer. 1974;7(6):34–45.
[3] GoldbergRP,Mager PS. Virtualmachine technology: a bridge from largemainframes tonetworks of small computers.

Compcon Fall 79. Proceedings; Washington, DC; 1979. p. 210–213.
[4] Garfinkel T, Rosenblum M. A virtual machine introspection based architecture for intrusion detection. Proceedings

of the Network and Distributed Systems Security Symposium; San Diego, CA; 2003. p. 191–206.
[5] Laureano M, Maziero C, Jamhour E. Intrusion detection in virtual machine environments. Proceedings of 30th

Euromicro Conference; Rennes, France; 2004. p. 520–525.
[6] Jiang X, Wang X. “Out-of-the-box” monitoring of vm-based high-interaction honeypots. Proceedings of the 10th

International Conference on Recent Advances in Intrusion Detection; Gold Goast, Australia; 2007. p. 198–218.
[7] Júnior VS, Lung LC, Correia M, et al. Intrusion tolerant services through virtualization: a shared memory approach.

24th IEEE International Conference on Advanced Information Networking and Applications; Perth, Australia. IEEE;
2010. p. 768–774.

[8] Dettoni F, Lung LC, Correia M, et al. Byzantine fault-tolerant state machine replication with twin virtual machines.
IEEE Symposium on Computers and Communications (ISCC); Split, Croatia; 2013. p. 398–403.

[9] Silva MRX, Lung LC, Magnabosco LQ, et al. Bamcast-byzantine fault-tolerant consensus service for atomic multicast
in large-scale networks. 2013 IEEE Symposium on Computers and Communications (ISCC); Split, Croatia. IEEE; 2013.
p. 000324–000329.

[10] Wang G, Ng TE. The impact of virtualization on network performance of amazon ec2 data center. INFOCOM, 2010
Proceedings IEEE; San Diego, CA. IEEE; 2010. p. 1–9.

[11] Mell P, Grance T. The nist definition of cloud computing. Gaithersburg (MD): National Institute of Standards &
Technology; 2011. SP 800–145.

[12] Soltesz S, Pötzl H, FiuczynskiME, et al. Container-basedoperating systemvirtualization: a scalable, high-performance
alternative to hypervisors. SIGOPS Oper Syst Rev. 2007;41(3):275–287.

[13] Bernstein D. Containers and cloud: from LXC to docker to Kubernetes. IEEE Cloud Comput. 2014;1(3):81–84.
[14] Peinl R, Holzschuher F, Pfitzer F. Docker cluster management for the cloud - survey results and own solution. J Grid

Comput. 2016;14:1–18.

http://orcid.org/0000-0002-1929-7743
http://orcid.org/0000-0002-6022-3631

20 H. NETTO ET AL.

[15] Ismail BI, Goortani EM, Ab Karim MB, et al. Evaluation of docker as edge computing platform. 2015 IEEE Conference
on Open Systems (ICOS); Melaka, Malaysia. IEEE; 2015. p. 130–135.

[16] Sill A. Emerging standards and organizational patterns in cloud computing. IEEE Cloud Comput. 2015;2(4):72–76.
[17] VermaA, Pedrosa L, KorupoluM, et al. Large-scale clustermanagement at googlewithborg. In: EuropeanConference

on Computer Systems; Bordeaux, France. New York: ACM; 2015. p. 18.
[18] Ongaro D, Ousterhout J. In search of an understandable consensus algorithm. USENIX Annual Technical Conference;

2014. p. 305–320.
[19] Lamport L. The part-time parliament. ACM Trans Comput Syst. 1998;16(2):133–169.
[20] Schneider FB. Implementing fault-tolerant services using the state machine approach: a tutorial. ACM Comput Surv.

1990;22(4):299–319.
[21] Hadzilacos V, Toueg S. A modular approach to fault-tolerant broadcasts and related problems. Ithaca, NY: Cornell

University; 1994.
[22] Ongaro D. Consensus: Bridging theory and practice [dissertation]. Stanford, CA: Stanford University; 2014.
[23] Howard H, Schwarzkopf M, Madhavapeddy A, et al. Raft refloated: do we have consensus? ACM SIGOPS Oper Syst

Rev. 2015;49(1):12–21.
[24] Oliveira C, Lung LC, Netto H, et al. Evaluating raft in docker on Kubernetes. In: Świa̧tek J, Tomczak JM, editors. Interna-

tional Conference on Systems Science (ICSS); Wroclaw, Poland. Springer; 2016. p. 123–130. (Advances in Intelligent
Systems and Computing; Vol. 539).

[25] Netto HV, Lung LC, CorreiaM, et al. Statemachine replication in containersmanaged by Kubernetes. J Syst Architect.
2017;73:53–59. Special Issue on Reliable Software Technologies for Dependable Distributed Systems.

[26] Mei Y, Liu L, Pu X, et al. Performance analysis of network I/O workloads in virtualized data centers. IEEE Trans Serv
Comput. 2013;6(1):48–63.

[27] Ostermann S, Iosup A, Yigitbasi N, et al. A performance analysis of EC2 cloud computing services for scientific
computing. Cloud computing; Munich, Germany. Springer; 2009. p. 115–131.

[28] Xavier MG, NevesMV, Rossi FD, et al. Performance evaluation of container-based virtualization for high performance
computing environments. 21st Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP); Belfast, UK. IEEE; 2013. p. 233–240.

[29] Amaral M, Polo J, Carrera D, et al. Performance evaluation of microservices architectures using containers. 2015 IEEE
14th International Symposium on Network Computing and Applications; Sep.; Boston, MA; 2015. p. 27–34.

[30] FelterW, Ferreira A, Rajamony R, et al. An updatedperformance comparison of virtualmachines and linux containers.
2015 IEEE International Symposiumon Performance Analysis of Systems and Software (ISPASS); March; Philadelphia,
PA; 2015. p. 171–172.

[31] Kozhirbayev Z, Sinnott RO. A performance comparison of container-based technologies for the cloud. Future Gener
Comput Syst. 2017;68:175–182. Available from: http://www.sciencedirect.com/science/article/pii/S0167739X163
03041.

[32] FelterW, Ferreira A, Rajamony R, et al. An updatedperformance comparison of virtualmachines and linux containers.
International SymposiumonPerformanceAnalysis of SystemsandSoftware; Philadelphia, PA. IEEE; 2015. p. 171–172.

[33] Coreos: etcd [https://coreos.com/etcd]; 2018 [cited 2018 Dec 06].
[34] Dwork C, Lynch N, Stockmeyer L. Consensus in the presence of partial synchrony. J ACM. 1988;35(2):288–323.
[35] Ailijiang A, Charapko A, Demirbas M. Consensus in the cloud: Paxos systems demystified. University at Buffalo, The

State University of New York; 2016.
[36] Cully B, Lefebvre G, Meyer D, et al. Remus: high availability via asynchronous virtual machine replication. Proceed-

ings of the 5th USENIX Symposium on Networked Systems Design and Implementation; San Francisco (CA); 2008. p.
161–174.

[37] Bolosky WJ, Bradshaw D, Haagens RB, et al. Paxos replicated state machines as the basis of a high-performance data
store. Symposium on Networked Systems Design and Implementation (NSDI); Boston, MA; 2011. p. 141–154.

[38] Marandi PJ, Primi M, Pedone F. High performance state-machine replication. IEEE/IFIP 41st International Conference
on Dependable Systems & Networks (DSN); Hong Kong, China. IEEE; 2011. p. 454–465.

[39] Raft on github [http://raft.github.io]; 2018 [cited 2018 Dec 06].
[40] GiffordDK.Weighted voting for replicated data. Proceedings of the Seventh ACMSymposiumonOperating Systems

Principles; Pacific Grove, CA. New York, NY: ACM; 1979. p. 150–162.
[41] Felber P, Narasimhan P. Experiences, strategies, and challenges in building fault-tolerant CORBA systems. IEEE Trans

Comput. 2004;53(5):497–511.
[42] Bessani A, Sousa J, Alchieri E. State machine replication for the masses with BFT-SMaRt. Proceedings of the Interna-

tional Conference on Dependable Systems and Networks; Atlanta, GA; 2014. p. 355–362.
[43] Shi R, Wang Y. Cheap and available state machine replication. 2016 USENIX Annual Technical Conference (USENIX

ATC 16); Denver (CO). USENIX Association; 2016. p. 265–279. Available from: https://www.usenix.org/conference/
atc16/technical-sessions/presentation/shi.

[44] Zhao W, Melliar-Smith P, Moser LE. Low latency fault tolerance system. Comput J. 2012;56(6):716–740.
[45] Zhao W, Melliar-Smith PM, Moser LE. Fault tolerance middleware for cloud computing. 2010 IEEE 3rd International

Conference on Cloud Computing; July; Miami, FL; 2010. p. 67–74.

http://www.sciencedirect.com/science/article/pii/S0167739X16303041
http://https://coreos.com/etcd
http://raft.github.io
http://https://www.usenix.org/conference/atc16/technical-sessions/presentation/shi

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 21

[46] Herlihy MP, Wing JM. Linearizability: A correctness condition for concurrent objects. ACM Trans Program Languages
Syst. 1990 Jul;12(3):463–492.

[47] Cachin C, Schubert S, Vukolic M. Non-determinism in byzantine fault-tolerant replication. International Conference
on Principles of Distributed Systems; Madrid, Spain; 2016. p. 1–16.

[48] ZhaoW.Byzantine fault tolerance for nondeterministic applications. Third IEEE International SymposiumonDepend-
able, Autonomic and Secure Computing (DASC 2007); Columbia, MD; 2007. p. 108–118.

[49] Zhao W. Performance optimization for state machine replication based on application semantics: a review. J Syst
Softw. 2016;112:96–109.

[50] Alchieri E, Dotti F, Mendizabal OM, et al. Reconfiguring parallel state machine replication. Symposium on Reliable
Distributed Systems; Hong Kong, China; 2017. p. 104–113.

[51] Alchieri E, Dotti F, Pedone F. Early scheduling in parallel statemachine replica. ACMSymposiumonCloudComputing
2018; Carlsbad, CA; 2018. p. 1–14.

[52] Burrows M. The chubby lock service for loosely-coupled distributed systems. Proceedings of the 7th Symposium on
Operating Systems Design and Implementation; Seattle, WA; 2006. p. 335–350. (Symposium on Operating Systems
Design and Implementation).

[53] Corbett JC, Dean J, EpsteinM, et al. Spanner: Google’s globally-distributed database. Proceedings of the 10thUSENIX
Conference onOperating SystemsDesign and Implementation; Berkeley (CA). USENIXAssociation; 2012. p. 251–264;
OSDI’12. Available from: http://dl.acm.org/citation.cfm?id= 2387880.2387905.

[54] Calder B, Wang J, Ogus A, et al. Windows azure storage: a highly available cloud storage service with strong
consistency. SOSP; Cascais, Portugal; 2011. p. 143–157.

[55] Glendenning L, Beschastnikh I, Krishnamurthy A, et al. Scalable consistency in scatter. Proceedings of the Twenty-
Third ACMSymposiumonOperating Systems Principles; Cascais, Portugal. New York, NY: ACM; 2011. p. 15–28; SOSP
’11. Available from: http://doi.acm.org/10.1145/2043556.2043559.

[56] Hunt P, Konar M, Junqueira FP, et al. Zookeeper: wait-free coordination for internet-scale systems. Proceedings of
the 2010 USENIX Conference on USENIX Annual Technical Conference; Vol. 8; Boston, MA; 2010. p. 11–11.

[57] Vukolić M. The quest for scalable blockchain fabric: proof-of-work vs. BFT replication. In: Camenisch J, Kesdoğan D,
editors. Open Problems in Network Security; Cham: Springer International Publishing; 2016. p. 112–125.

[58] Pass R, Shi E. Hybrid consensus: efficient consensus in the permissionless model. IACR Cryptology ePrint Archive.
2016;2016:917.

[59] Eyal I, Gencer AE, Sirer EG, et al. Bitcoin-ng: a scalable blockchain protocol. In: 13thUSENIX SymposiumonNetworked
Systems Design and Implementation (NSDI 16); Santa Clara (CA). USENIX Association; 2016. p. 45–59. Available from:
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal.

[60] Abraham I, Malkhi D, Nayak K, et al. Solida: a blockchain protocol based on reconfigurable byzantine consensus.
Proceedings of the 21st International Conference on Principles of Distributed Systems; Lisboa, Portugal; 2017. p.
25:1–25:19.

[61] Arnautov S, Trach B, Gregor F, et al. Scone: secure linux containers with intel sgx. OSDI; Vol. 16; Savannah, GA; 2016.
p. 689–703.

[62] Atomic project: docker and selinux [http://www.projectatomic.io/docs/docker-and-selinux/]; 2018 [citex 2018 Dec
6].

[63] Morabito R, Kjallman J, Komu M. Hypervisors vs. lightweight virtualization: a performance comparison. 2015 IEEE
International Conference on Cloud Engineering (IC2E); Tempe, AZ. IEEE; 2015. p. 386–393.

[64] Varma PCV, Chakravarthy KVK, Kumari VV, et al. Analysis of a network IO bottleneck in big data environments based
on docker containers. Big Data Res. 2016;3:24–28.

http://dl.acm.org/citation.cfm?id=2387880.2387905
http://doi.acm.org/10.1145/2043556.2043559
http://https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal
http://www.projectatomic.io/docs/docker-and-selinux/

	1. Introduction
	2. Virtualisation, containers and Kubernetes
	3. State machine replication and Raft
	4. KRaft: Raft modified to run in Kubernetes
	Applications that could benefit from the proposed solutions

	5. Evaluation
	5.1. Experiments setup
	5.2. Results and discussion
	5.2.1. Latency and throughput
	5.2.2. System resources consumption
	5.2.3. Replication overhead
	5.2.4. Impact of failures in the system

	6. Lessons learned
	6.1. Load balancer vs. state machine replication
	6.2. Replication costs
	6.3. Consensus algorithms and virtualisation

	7. Conclusions
	Notes
	Disclosure statement
	Funding
	ORCID
	References

